Proceedings of the 1999 Summer Computer Simulation Conference (SCSC 1999).

July 1999. Chicago [SCS]. ISBN 1-56555-173-7

PROBLEM ORIENTED MODELLING AND SIMULATION

Hans P.M. Veeke and Jaap A. Ottjes,
Faculty of Mechanical Engineering and Marine Technology
Delft University of Technology
Mekelweg 2, 2628 CD Delft, the Netherlands
e-mail: H.P.M.Veeke@wbmt.tudelft.nl , J.A.Ottjes@wbmt.tudelft.nl

KEYWORDS

Industrial processes, Transportation,
Model design, Discrete simulation,
Process-oriented

ABSTRACT

This paper proposes to combine the ‘systems approach’
technique with process-oriented modelling and simulation.
The process-oriented modelling concept, in which a system
is decomposed into a set of component classes, each with a
specific data structure, processes and mutual interactions
fits well to the general concept of ‘systems approach’. The
advantages of this are that during the design phase the
modelling can be “‘problem oriented” and furthermore a
hierarchical structure can be designed. Combining this
approach with a modern software platform provides
opportunities for flexible modelling an reuse of component
classes. As an example the modelling of part of a container
terminal is shown. An absolute demand on a simulation
tool for practice is its speed and the capability to manage
large-scale models. A simple benchmark has been worked
out in a process-oriented package ‘TOMAS’, the kernel of
which is a fast sequencing mechanism for managing
parallel processes.

INTRODUCTION

Industrial systems with a large number of actors, complex
control systems and a high demand for flexibility and
scalability make heavy demands upon modelling and
simulation. This paper is mainly concerned with
developments in which logistic simulation models are an
integrated part of a design process. This implies that when
the modelling process starts, all questions are either still
incomplete or not yet explicit. Consequently, during the
design process models continue to evolve as insight into the
processes increases and the questions become more
detailed (van Dijk et al. 1996). The authors’ experience of
modelling large-scale industrial systems for production and
transport by using systems approach as a general modelling
method and process oriented simulation extends over many

years. This approach allows rapid adaptation of the models
to new demands and parameterisation of the equipment and
controls of the models, but has the disadvantages of
requiring programming and of poor visualisation facilities.
In industrial simulation, the current trend is towards the use
of graphically oriented simulation packages. Most new
simulation tools focus on providing visual facilities to
model designers and there is only a limited possibility to
use a programming environment. They can be used in many
practical cases, especially when control demands are simple
or standard and allow fast prototyping and easy
visualisation (Lilegdon et al.1994). However, when these
tools are used in situations requiring complex controls, the
user may encounter problems and is committed to artificial
program-constructions or is forced to employ a
programming language for coding specific features. The
adaptation of models appears to be difficult and, if
programming is needed, additional skills are required.

SYSTEMS APPROACH

The systems approach is a technique that is widely used to
investigate organisational and logistic processes. This
approach facilitates structural improvement and/or effective
design of logistic systems (in 't Veld 1998). The advantages
of using the systems approach are that:

Q it forces designers to think in terms of processes,
functions and controlling mechanisms, thus providing
a structured model and a natural way for all members
of the design team to communicate with each other
about the model;

O the use of the black box-approach, which is an
essential part of the systems approach, ensures explicit
definition of input- and output flows and global results
can be formulated by simply observing these flows,
even without simulation;

Q by defining levels of aggregation, it is possible to
obtain a balanced, hierarchically structured model for
analysis and design. This has the additional advantage
of recognising at which level which questions have to
be answered.

In view of the above, simulation is only part of the systems
approach. For this reason, we make a clear distinction
between modelling and simulation (Veeke 1982)

MODELLING AND SIMULATION

The main goals of modelling are to define the system under
investigation in terms of process descriptions and
procedures and to formulate the right questions and the
options that may be chosen. Simulation is the logical sequel
to this with the following objectives:

Q give quantitative support to the modelling by showing
the consequences of all options formulated by
modelling;

Q to give qualitative support to the modelling by
revealing unexpected problems. Such problems
frequently appear in situations where control issues are
being investigated. During the design of a simulation
model the use of a control-principle, for example, often
results in unexpected behaviour or indicates the lack of
data.

From these arguments it becomes clear that during an
analysis or design process modelling and simulation have
to be used interactively. When simulation is used only after
all decisions have been made, it is not accorded its true
value. Thus, there is a danger that that simulation leads
only to ‘streamlining the existing’ or that the results of
simulation can no longer be used because the design
decisions have already been taken. The next example of the
design of a container terminal illustrates the modelling
concept.

DESIGN OF A CONTAINER TERMINAL.
In this example a part of the design process of a container

terminal is described. During this design process we want
to gain insight in how much equipment is needed.

Containers Containers
in ship |- Import in stack |-
— P contaners [

Figure. 1. First modelling level of the import process.

The example is restricted to the seaside-import process.
Containers must be unloaded from a ship and put into a
stack-area. The highest level black box is shown in fig. 1.
This level is rather abstract, still we can argue that we
always need three functions to perform the import-process:
unload containers from a ship, transport them to the stack

and finally put them into the stack. So zooming into the
black box ‘import containers’ gives figure 2.

Containers Containers
in ship in stagk
I Y
— Unload Transport Sack ——

Figure 2. Second modelling level of the import process.

At this level, some important questions must be answered:

a. What kind of equipment do we use? We can choose for
equipment which is able to handle all the functions, but
we also can choose for equipment specialised on each
function separately.

b. In case of separate equipment for all functions, what
about the interface between it. Is there a direct
coupling or is a buffer function needed.

If we can’t or won’t answer these questions right now, we

have to model this case in the most general way. So

between these primary functions ‘transfer’-functions are
inserted. This demonstrates also the strength of modelling
in terms of ‘functions’: each function may become empty
after choosing in a later stadium of the design process.

In this example we choose for a chain of processes for each
container with no buffering in between and we decide to
use QC’s (Quay Cranes) for the unloading the container
ship, AGV’s (Automatic Guided Vehicles) for transport
and ASC’s (Automated Stacking Cranes) for the stacking
of containers. The AGV’s have no facilities to pick up or
put down containers themselves. They are served by QCs
and ASCs. These choices necessitate separate ‘transfer’-
processes between unload and transport, and between
transport and stack. This is shown in figure 3.

Contanls r O —- = | Gontainers
inship' ‘ ‘ ‘ in gtack
Unload Transfer Transport Transfer Stack
’ | i ”
\ R A |

Figure. 3. Third modelling level of the import process.

The dotted lines indicate the processes for each equipment-
type involved. The transfer processes not only demand
technical provisions, but also influence the logistic process,
because two equipment-types are needed for each transfer-
process. Therefore synchronisation is needed between
equipment processes to avoid excessive waiting times.

The next modelling step is to describe the processes of each
equipment-type. To that end we have to add the
equipment-flows as shown in figure 4.

Unload Transport Stack

Figure. 4. Fourth modelling level of the import process
Now we will focus on the individual equipment processes.
The AGV-system is taken as an example,

see figure 5. The job control will not be elaborated here.

Transfer

‘ [

. | |

A o — e ase
| ¢ Receive ‘ Transport 1 \ i :gc | Deliver ‘ ¢
i [/ — o —Pp ol g ol
. | | |
| | [S
I |
|
. Tt T T T T T T T T T T T T T
‘ i
| Wait 4 Dive g Wait 4
i forQC W o forjob o |
. |
| - —]

Figure. 5. Fifth modelling level of the import-process: the
AGV-process.

In each black box the equipment-types involved have been
indicated. We now have a complete view of the AGV-
process for handling import-containers. The minimum
number of AGV’s needed can easily be calculated by using
averages of technical handling times and transport times
and ignoring waiting times. On the other hand the waiting
processes become clear explicitly. They are determined by
the quality of the job-control-process. Several questions can
be derived from this model. How to control the terminal to
minimise the waiting times. How many AGV'’s are needed
then? What is the effect if AGV’s would have their own
pick-up and put-down facilities? If we buffer containers at
the QC’s, what will be the consequences for the AGV-
system? In this specific example it might be necessary to
zoom into the traffic control of the AGV system. A
complete model of the automated container terminal is
obtained if the other equipment processes are added and if a
similar model for the export container flow has been
developed. Answering questions involving waiting times
and job control methods demand simulation of the model.

This modelling approach fits highly with the process
oriented approach of simulation and thus with tools
supporting this method.

TOOL REQUIREMENTS

According to systems approach, the ‘process-approach’
plays a central role during the modelling phase. Therefore,
it is quite logical that a simulation tool should support this
approach. Tools supporting the process approach are
therefore preferable to tools that use the ‘event-approach’.
Because defining a ‘process’ is a logical way to arrange the
events occurring in a system and to maintain a natural way
of description, the arrangement of events is essential. In
cases of event-simulation, this arrangement is usually
determined by the simulation tool itself (and not well
documented). With the process-approach, the sequence of
events within the same process is completely defined. The
sequence of events in the various processes is managed by
the active components of the model.

In this respect the concept differs from that usually
understood by process oriented simulation, in which it is
considered equivalent to flow orientation (Robert and
Dessouky 1998). However all the advantages of object
orientation remain valid.

In accordance with these principles a “Tool for Object-
oriented Modelling and Simulation’, (TOMAS), has been
developed. This may be considered as a ‘toolbox’ that can
be used in a standard Delphi-environment. TOMAS is
object-oriented, supports modelling and is able to simulate.
It will support for hierarchical modelling and zooming
facilities. TOMAS is a follow up of the package ‘Must’
(Must simulation software1992), which is still being used
for modelling large-scale industrial systems,

(Ottjes et al. 1996).

The main classes in TOMAS are:

Q Components. Each component has its own ‘process-
method” and methods to generate events (hold,
passivate, standby...) during the execution of the
process-method. A component can also influence the
processes of other components (by means of
StartProcess, ResumeProcess, CancelProcess...) and,
finally, a component possesses methods to enter
queues, leave queues etc.

O Queues. A queue is a set of components. In the case of
a ‘waiting’ queue, statistical data are gathered
automatically. The use of queues appears to be very
useful for modelling the control system.

O Collections. A collection is used to assemble values of
quantities to be measured. A collection provides online

support for the graphical representation of these
guantities.

Visualisation of the simulation results is of growing
importance.

Several online visualisation purposes may be distinguished:
1. Debugging and verification

2. Display intermediate results

3. Presentation

Points 1 and 2 are well served if the actual status of the
simulation, such as queue status, histograms and user
defined specific status information can be shown on screen
in a flexible way by dynamic tracing. When the research
topic involves the physical movement of components, as in
the case of traffic control studies, animation is
indispensable. Point 3 may demand both dynamic tracing
and animation.

The simulation tool TOMAS is being developed in a
standard Delphi-environment so all facilities of Delphi are
available including the possibility to implement classes
developed as general reusable ‘Delphi components’.
Animation is supported as a separate toolbox, using the
windows thread mechanism.

PROCESS MODELLING AND SIMULATION SPEED

The principle of the process modelling will be illustrated by
solving the fastest route problem. This is not intended to be
an alternative to the Dijkstra algorithm but rather as an
illustration of the process modelling, the dynamic
generation of components, the parallel processing of
components and to obtain simulation speed performance
data.

The informal model will be sketched in terms of
component classes, attributes and processes.

Model purpose: find fastest route between start Node and
destination Node in a network.

Component classes

nodeClass:

Attributes: set of tracks (trackSet)

trackClass:

Attributes: node 1, node 2

carClass:

attributes: array of passed nodes (passedTrackArray),
beginNode, trackToDrive, endNode

Process of a car

Q hold driving time (sampled from distribution)
Q add trackToDrive to passedTrackArray

Q draw track on screen

O if endNode=destinationNode then report and terminate
simulation

Q create a new car for each track in trackSet of endNode
which has not yet been passed

Q copy own passedTrackArray to passedTrackArray of
all new cars

Q activate all new cars

Q terminate self

Initialisation:

Q create network: This means: read from a file the
coordinates of all nodes and the connecting tracks,
assign node 1 and node 2 of all tracks and put the
nodes into the trackSet of the correct node.

Q decide on startNode and destinationNode

Q create the first car at the startNode and activate it.

In applied simulation speed is of the utmost importance so
a benchmark was therefore developed. As a benchmark
network a 100 x 100 nodes “Manhattan shaped” network
was used that consequently contained 10.000 nodes and
19.800 tracks. The first car was started in the middle of the
network, the end node being the middle node of the lower
edge of the network. The travelling time for each track was
sampled from a negative exponential distribution with an
average of 1. The simulation was terminated after the first
car reached the destination node. The run was executed on
a Pentium-2 processor running at 266 MHz. The results are
shown in figure 6. The Delphi/TOMAS code for the
definition of the car class and its process description is
shown below.

Car d ass = O ass(TonmasConponent)

PassedTr acks Array[1..MaxTracks] O
Trackd ass;

Nr Of PassedTracks : integer;

St art Node Noded ass;

TrackToDri ve Trackd ass;

EndNode NodeCd ass;

Publ i shed

Constructor Create (cNane: String;
Begi nNode: NodeC ass; DoTrack: Trackd ass;
Creator: CarC ass);
Procedure Process; Override;
Procedure Multi ply(FromNode: noded ass);
Procedur e ShowPat h;
End,;

Procedure Card ass. Process;
Begi n
Ent er Queue(Curr ent Car Set) ;
Hol d(Tr avel Di s. Sanpl e) ;
I nc(Nr Of PassedTr acks) ;
PassedTr acks[Nr Of PassedTr acks] : =Tr ackToDr i ve;
{check if in node B}
I f (EndNode=Dest i nati onNode)
AND (Wnner=Ni|) Then

Begi n

W nner: =Sel f;

End;

If Wnner= nil then Miltiply(EndNode);
LeaveQueue(Current Car Set) ;

Ter m nat e;

End;

procedure Card ass. Ml ti pl y(FronmNode: NodeC ass) ;
Var
hQ TomasQueue;
hTrack: Trackd ass;
Begi n
hQ =Fr omNode. Tr ackSet ;
hTrack: =hQ Get Fi r st Conponent ;
Wi le hTrack <> Nil Do
Begi n
I f NOT(hTrack. Passed) Then
Begi n
I nc(Car Count) ;
NewCar : =Car Cl ass. Create(' Car_' +
hTr ack. Get Nane, Fr omNode, hTr ack, Sel f);
NewCar . St art Process(Current Ti ne) ;
hTrack. Passed: =Tr ue;
End;
hTr ack: =hQ Get Next Conponent (hTr ack) ;
End;
End;

BT |

fastast traveel thime
proness (CPU) time (s} $11

me BEArS in process 1281
cairrend Fears v process - 1131
totsl numbser of oreated oars: 15640

Figure 6. Result of the fastest route model. The nodes have
been numbered from the upper left to the lower right part of
the network area. As a starting node was node5050 in the
middle of the network was taken and the as destination
node9950. As soon as the first car reaches the destination
node the others do not multiply any more and terminate.
This explains the "loose ends" in the plot.

CONCLUSIONS

The process-modelling approach conforms well to the
general modelling concepts of systems approach. This
makes it possible to develop problem-oriented hierarchical
models if there are no restrictions imposed by the
simulation tools to be used in the model implementation
phase.

The process modelling approach is object-oriented in
nature. This means that modern object-oriented platforms
can be used as a basis for modelling. The interface facilities
combined with the inheritance, extensibility of the objects
allows the user to find the balance between coding ‘own’
classes and selecting and/or extending predefined classes.

A simulation tool is being developed to support the
process-oriented approach. It is based on a time-sequencing
kernel to manage the concurrent processes of the model.
Industrial models require that this mechanism should be
fast. A simple benchmark is used that gives quantitative
performance data.

REFERENCES:

Dijk Johannes N. van, Jobing Marcel J., Warren James R., Seeley
Douglas, Macri Riccardo, "Visual Interactive Modelling with SimView for
Organizational Improvement", Simulation vol 67:2, pp.106-120, August
1996

Lilegdon William R., Martin David L., Pritsker A. Alan B.,
"FACTOR/AIM: A Manufacturing Simulation System, Simulation

vol 62:2, pp.367-372, june 1994

Must, " Simulation Software User and Reference Manual” v:5.50 (1992)
Upward Systems, Rijswijk, The Netherlands

Ottjes, J.A., Duinkerken, M.B., Evers, J.M., Dekker, R. “Robotised inter
terminal transport of containers” , Proc. 8" European Simulation
Symposium 1996 Genua [SCS] pp. 621-625,

ISBN 1-56555-099-4 Vol |

Robert, C.A., Dessouky, M. “An Overview of Object-Oriented
Simulation” Simulation vol:70:6, pp. 359-368. 1998.

Veeke H.P.M., "Process simulation as a management Tool, Proceedings of
the IASTED International Symposium Applied Modelleing and Simulation,
Paris, 1982.

in 't VVeld, J., "Analysis of organisation problems", Educatieve Partners
Nederland BV, 1998, ISBN 90 11 045947 (in Dutch)

